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Abstract. Symmetry properties and structural phase transitions of the relaxor ferroelectric 
PbSco 5Ta, are described using Lands? theory. Symmetry reductions in _disordered 
material occur via a ferroelastic (Pm3m-R3m) and a ferroelectric trcnsition (R3m-R3m). 
Ordering involv_es the zone boundary instabilities Pm3m(Z = l)-Fm3m(Z = 2) (R point), 
R3m(Z = l)-R3m(Z = 2) (Z point) and R3m(Z = l)-R3m(Z = 2) (Z point). The Landau 
potential includes the coupling between the three primary order parameters describing the 
cation ordering, the ferroelastic and the ferroelectric lattice distortions. Relaxor behaviour 
is related to the kinetic properties of order parameters with intermediate conservation 
lengths. Kanzig domains are related to inhomogeneous solutions of the kinetic rate law. 

1. Introduction 

PbSCO,STaO,503, PST, shows phase transformations characteristic for diffuse, relaxor- 
type behaviour. Relaxor materials are also called dirty ferroelectrics because their 
transformation behaviour appears to be inhomogeneous and it is heavily influenced by 
lattice imperfections. The structure of these materials is based on the A B 0 3  perovskite 
framework with ideal cubic high-temperature symmetry. In PST the B site is occupied by 
either scandium or tantalum. Their atomic arrangement can be controlled by isothermal 
annealing (Setter and Cross 1980, Stenger and Burggraaf 1980, Randall et a1 1986) 
leading to different degrees of Sc,Ta order. Renewed interest in these materials has 
arisen because similar behaviour was observed in high-T, superconductors (Salje 
1989a, b). 

Fully disordered PST shows macroscopically a diffuse phase transformation near 
270 K while ordered PST undergoes a discontinuous phase transformation at about 
300 K (Setter and Cross 1980, Groves 1985). Both transformations take place from a 
paraelectric high-temperature phase to a ferroelectric low-temperature phase. Ordering 
of the B cations affects the optical, thermal and dielectric properties considerably 
(Zimmer etal1987, Cross 1987, Stenger and Burggraaf, 1980). Additionally the ordering 
produces a superlattice doubling of the unit cell to 2 ~ 0  X 2a0 X 2a0 (a0 is about 4 A) and 
yields a face-centring of the B cations on the lattice. The space group of the ordered 
paraelectric phase of PST is therefore Fm3m(2ao). The ferroelectric low-temperature 
phase exhibits rhombohedral symmetry. Due to the small and varying size of ferroelectric 
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domains and due to inhomogeneities within the crystals (Randall et a1 1986, 1987) 
the space group of the ordered low-temperature modification has so far not been 
determined. However, geometrical descriptions of possible departures from idealperov- 
skite by Megaw and Darlington (1975) allow predictions of the likely space group of 
ferroelectric, ordered PST to be R3, R3m or R3c. 

For disordered PST the atomic displacements occurring in the rhombohedral phase 
were described by Groves (1985). He showed that beside the influence of B-site cation 
order, A-site cation displacements occur below T,  which are associated with the electric 
dipoles. In contrast to Chang and Chen (1985) who assumed a tetragonal symmetry in 
the ferrophase, Grove (1985) found from x-ray diffraction a phase transformation 
from a cubic paraelectric phase, space group Pm3m (ao, 2 = 1) to a ferroelastic low- 
temperature modification with space group R3m or R3. 

Up to now no group theoretical description of the phase transitions in relaxor 
materials exists which, as a prime objective, has to distinguish between the two driving 
transformation processes; firstly the structural ordering corresponding to the formation 
of a superlattice and secondly the subsequent appearance of electric dipoles 
accompanied by an elastic strain. 

Consequently we focused our interest on a theoretical concept of the phase sequence 
taking into account pure supergroupsubgroup relations and correlated symmetry 
reductions associated with the active irreducible representations. The order parameter 
behaviour and their coupling is derived for ordered and disordered lead scandium 
tantalate. We also derive Landau-Ginzburg expressions of the free excess energy and 
introduce a new concept for the understanding of kinetic processes in relaxor materials. 
These theoretical approaches are the starting point for further experimental work which 
will be published separately (Bismayer et a1 1989). 

2. Group theory 

Starting from the ideal cubic unit cell (2 = 1) of the disordered paraphase in PST with 
space group Pm3m, symmetry reductions to trigonal symmetry can theoretically be 
constructed using the active representations that transform as TI, or r4 (Janovec et a1 
1975, Stokes and Hatch 1988). The physical properties of relaxor materials are, however, 
not adequately described by such one-step behaviour because of the following: 

(i) Relaxors represent non-equilibrium states with kinetic hindrance for some of the 
ordering schemes to reach the equilibrium state. Other ordering schemes may relax 
further in a non-homogeneous matrix. It is hence necessary to consider each ordering 
scheme separately, including their mutual coupling. 

(ii) There is no experimental evidence in fully cation-ordered material that the phase 
transition Fm3m-R3m occurs in one single step. It appearsplausible that the ferroelectric 
and the ferroelastic phase transitions take place as two coupled phenomena and should 
be seen as two steps of a cascade of phase transitions involving symmetry reduction to 
the respective maxima space groups (see Lovenc et a1 1980). 

We hence treat the system as a sequence of phase transitions each involving symmetry 
reductions to the maximum subgroup (Znternationul Tables for Crystallography 1983, 
Boyle and Lawrenson, 1972). Any single-step behaviour follows then automatically as 
special case of our general solution. An allowed translationengleiche maximal non- 
isomorphic subgroup of Pm3m is R3m (D&). During this transformation the unit cell 
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Figure 1. Brillouin zon_es of the cubic disordered 
form, space group P M 3 4  and the rhombohedric 
forms, space groups R3m and R3m. The order 
parameter of the ferroelastic phase transition is 
Q,, its irreduciblerepresentationisTZg, the critical 
point is theoriginr. The critical point of the cation 
ordering process is R = (1,?, 1)  in the cubic form. 
The equivalent zone-boundary point in the rhom- 
bohedric Brillouin zone is called 2. Note that the 
2-point notation is not identical with the 
nomenclature of Bradley and Cracknell (1972) 
which has been followed throughout the paper 
otherwise. 

remains unchanged in size and hence the critical point of the Brillouin zone (BZ) of the 
paraphase is the origin (r) (figure 1). According to Janovec et a1 (1975) the active 
representation that accounts for the symmetry lowering Pmgm + Rgm is T2g. The 
spontaneous physical quantity that transforms according to this irreducible rep- 
resentation is the elastic deformation with the proper components eyz = ezx = exy, or, in 
Voigt notation, 2ey, = .e4, 2e, = e5,  2e, = e6. Consequently in the transition process of 
disordered PST the relevant order parameter is Q,, which has the same symmetry as the 
spontaneous strain. In a second step the ferroelectric modification with the space group 
R3m is adopted as a maximal non-isomorphic translationengleiche subgroup of Rgm. 
Again the size of the unit cell does not change and the critical point is again r (figure 1). 
The corresponding active representation, A*", transforms like the z-component of a 
polar vector giving rise to the constitution of the spontaneous polarisation parallel to z 
below T,. The total phase sequence is hence Pm3m - Rgm - R3m. 

A hypothetical two-step phase sequence can also be described in the case of ordered 
lead scandium tantalate. Starting from the eightfold unit cell of the paraelectric parent 
phase with space groupFm3m (i.e. 2 = 2for the equivalent primitive setting) a deduction 
to a non-cubic polar subgroup is not possible directly on the basis of the arguments given 
above. The first group-theoretically allowed symmetry reduction to a maximal non- 
isomorphic subgroup that is not accompanied by a change of the unit cell leads to Rgm 
(D&) (figure 2). The active representation that transforms according to the (secondary) 
order parameter in this transformation process in TZg. The corresponding components 
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Figure 2. Brillouin zones of the cation-ordered 
phajes. The cubic form has the space group 
Fm3m- (top), the rhombohedric space groups 
are R3m and R3m (bottom). The ferroelastic 
order parameter is Q A ,  its irreducible repre- 
sentation is T,, with a critical 

* kY 

point. 

of the elastic deformation are the same as in disordered PST leading to the non-driving 
order parameter Q: . In a second step the point symmetry 3m is lowered to 3m(C3") by 
a trunslationengleiche phase transition with a critical zone-centre r of the paraphase 
(figure 2). Again the active representation for this phase transformation is Azu which 
transforms like the spontaneous polarisation Qi corresponding to the formation of an 
electric moment parallel to the crystallographic z axis. Q; is the driving order parameter 
of the ferroelectric phase transformation in ordered PST. Due to the lowest-degree 
invariants of the polarisation components and of the strain ones, coupling via gradient 
terms to the order parameter invariant is obvious. 

The symmetry change characteristic for the transformation due to the ordering of 
PST is accompanied by a change of the size of the unit cell. Hence, the critical point is 
determined by a k-vector on the surface of the Brillouin zone of each disordered 
modification. In order to specify the structural transformations with a breaking of 
translational symmetry in PST we follow the concept given by Toledano and Toledano 
(1982) using the notation of BZ points by Bradley and Cracknell(l972). Figure 3 shows 
that the representation at the R point h 4 a of the BZ of disordered PST induces the 
transition Pm3m(Oi)+ Fm?m(Oi). The non-polar space group R h ( D i d )  (2 = 1) 
transforms by ordering into R%I(D;d) ( Z  = 2) induced by a critical representation at 
the Z point h 4 4 of the surface of the rhombohedral BZ of disordered PST (figure 4) (the 
same point Z has been called T by Cracknell et a1 (1979); we prefer to continue to use 
the Z-point notation to emphasise that this point is the intersection of the z axis and the 
Brillouin zone in the system). The polar-polar transformation is described by the space 
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Figure 3. Correlation between the Brillouin zones of the two cubic forms PmTm (large zone) 
and Fm3m (fully included in the former zone). The order parameter which folds back the 
large zone into the smaller one is Qod with a critical R point. The R point is the corner of the 
large Brillouin zone. 

Figure 4. Correlation between the_Brillouin zones of the rhombohedricforms. The Brillouin 
zone of the disordered material (R3mor R3m) encompasses the Brillouin zone of the ordered 
material. Theorder parameters are QAd forthe ferroelasticforms and Qgd for the ferroelastic/ 
ferroelectric forms. The critical points are always Z, which is the intersection of the k, axis 
and the Brillouin zone. 
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r QP'A2") r 
Figure 5. Correlation between the space groups 
involved in structural phase transitions in the 
relaxor material PbSco 5Tao 503. The arrows indi- 
cate the direction in which the symmetry is 
reduced. At each arrow the relevant order par- 
ameter and the critical point in the Brillouin zone 
of the respective high-symmetry form is indicated. 

R3m I C i I  * R3m 1C;J The active representations are shown in brackets 
next to the order parameters. 

QL{A2,] 

QNod 

2 2 2  
2. ,111) 

groupchangeR3m(C$,) + R3m(C$,) withadoublingoftheprimitivecellcorresponding 
to the criticality of the Z point 4 4 4 of the rhombohedral BZ (figure 4). 

Hence we note that group theory leads unambiguously to the space group of the 
ordered ferroelectric phase. The space group of this modification has not yet been 
identified by means of diffraction experiments. The full sequence of phase trans- 
formations disordered + ordered, paraelectric + ferroelectric is given in figure 5 .  

3. Landau potentials 

The phase transitions depicted in figure 5 can be divided into two types: the zone 
boundary phase transitions occur at the R and Z points of the cubic and rhombohedral 
Brillouin zone, respectively. The irreducible representations are one-dimensional and 
the Landau potential takes the simple form (e.g. Landau and Lifshitz 1980) 

where Qod stands for all three possible order parameters of the cation ordering process, 
namely Qod, Qhd and Qbd. The R and Z points are unique, so no domain structure due 
to the topological degeneracy of the critical point can occur. Domain boundaries can 
occur, however, which are related to the transformations Z + - Z in the rhombohedric 
system and R + - R and R + C4R, C2R, CiR in the cubic system. 

The second translation-invariant phase transition is related to the order parameters 
Qp and QL which break the polar symmetry within the trigonal system. The Landau 
potential is 

G(Q,) = Up(T - T{)Q; + $BpQi  + 8CpQE + . . . . (2) 

We now discuss the coupling properties of Q, and Qp (or Ql, , QL) with respect to the 
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spontaneous strain e = (e4, e5, e6) and the spontaneous polarisation P,. Bilinear coupling 
occurs between e and Q, and, for the polar representation, between P, and Qp. Biquad- 
ratic coupling is symmetry allowed between e - Qp and P, - Q,; linear quadratic terms 
occur for all combinations of Q,. 

The ferroelastic order parameters are Q, and Qd which break the cubic symmetry to 
rhombohedric. We assume that their irreducible representations do not change the 
translational symmetry which implies that these transitions are classified as proper 
ferroelastic ones. The active representation of Q, (or Qk) is TZg, the order parameter is 
triply degenerate with Q, = (e,,>. The Landau potential is 

G(Qe) = U e ( T  - TZ)(Qf, + Q f 5  + Qf6) 

+ @eQe,Qe,Qe, + hCe(Q:, + Q:5 WZ6) . . . (3) 

A mono-domain crystal is described by a deformation along [ l l l ] ,  for example, and we 
can simplify the Landau expression for Q,, = Q,, = Qe6 to 

G(Q,) = G , ( T  - TZ)Qf + +Bee: + iC,Q: + . . . . (4) 

This phase transition will be of first order unless the numerical value of Be is accidentally 
zero. The terms of the Landau potential which are homogeneous in e and P, are 

G(e, P,) = ArQ,,ei + APQpP, + &? QfiP: + g e  Qie; 
I i i 

+ Q, 2 Qf,ei  + . . . + d 2 Cikeiek + dePZ 
ikl i 

where the summation has to satisfy the invariance condition. If interactions between 
different ferroelastic domains are ignored, the coupling term reduces to 

G(e, P,) = Ae  Q,e + ApQpP, + E p  Q f P: + te Q;ez + Q2e + . . . + ice2 + del':. (6) 
Indirect coupling between Q, and Qp is introduced by minimisation of G(e, P,) with 
respect to e and P, (Salje and Devarajan 1986, Bismayer et al 1986, Salje 1985). In 
addition direct coupling occurs between Q,, Qp and Qod. The leading symmetry allowed 
terms are 

G(co'JPli%) = r e p  Q f Q; r e ,  od Q f Qzd r p , o d  Qi Q;d* (7)  
Fluctuations and gradient coupling are described by the Ginzburg energy (Landau and 
Lifshitz 1980, Salje and Wruck 1988). We include non-invariant terms because we also 
consider inhomogeneous solutions which is necessary in order to describe the effect of 
chemical inhomogeneities 

G(Ginzburg) = Ag_g,lVQ,I2 + dgplvQp12 + igodlVQod12 

+ Q,$<QevQp * QpvQe) + Q,=od(QeVQod ' QodVQe) 

+ Q,,,',od(QpvQod f QodvQp). (8) 
The total Landau-Ginsburg energy is the sum over these energy distributions 

G(Qe7 Qp7 Qod, e7 P)  = G(Qod) + G(Qe> + G(Qp) + G(e7 P z )  

+ G(coup1ing) + G(Ginzburg). (9) 
It represents a system with three interacting primary-order parameters and two sec- 
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ondary-order parameters. Analytical solutions have been obtained in case of two inter- 
acting driving-order parameters by Imry (1975), Gufan and Larin (1980) and Salje and 
Devarajan (1986). No systematic investigations of systems with three driving-order 
parameters are known to the authors and we do not want to embark in a discussion of 
the topology of its order-parameter vector space in this paper. 

An interesting consequence of the form of the Landau-Ginzburg potential for relaxor 
materials is the difference of the length scale on which the various order parameters 
act. The longest interaction length occurs for e where strain interaction occurs over a 
macroscopic scale (larger than 500 A, say), the shortest is related to Qod (some 10 A). 
The equivalent lattice relaxation of the elastic interaction is described on a structural 
level by Q,. In the limit of strong coupling, Q, and e follow the same pattern. If the 
coupling is weak, the sublattice distortion might not follow the strain field and non- 
linearities of the elastic constants might develop. Salje (1985) has shown that mini- 
misation of G(Q,, Qp,  Qod, e, P,) with respect to e or Q, do not necessarily lead to the 
same minimum of the total free energy. In the case of the perovskite structure, this point 
might be relative if Q,contains elements of octahedral rotations (in the ordered or partly 
ordered form) rather than pure shear distortions. The latter are the only possible 
components in fully disordered material. In this case we reduce the total Landau- 

a similar way we may assume strong coupling between Qp and P, which leads to a 
renormalised potential G(e, P,, Qod) using (S/SQ,)G(e, Q p ,  Qod, P,) = 0. A further 
reduction of the number of order parameters appears unphysical because the spon- 
taneous strain e and the strain induced via electrostriction can be of comparable mag- 
nitude. Rescaling of e with respect to P, is non-linear and the analytical form of e(PZ) 
cannot be predicted from theory. Experimental determinations of the electrostriction 
and the piezoelectric moduli as functions of e (or P )  are required to proceed further. 

Ginzb'Jrg energy to G(e, Q p ,  Qod, Pz) from (6/aQe)G(Qe, Q p ,  Qod,  e ,  PI) = 0.  In 

4. Kinetic behaviour 

We finally comment on the possibility that relaxors might represent a new class of 
materials with respect to their kinetic behaviour. In our analysis we have constructed 
the Landau-Ginzburg potential of the equilibrium state. The most likely minimisation 
procedure leads to G(e, P,, Qod), where e and P, have long interaction lengths and Qod 
has a short interaction length. Both order parameters e and P, relax rather rapidly and 
frozen-in states occur for constant values of Qod. As e and P, are non-conserved order 
parameters we can deduce the kinetic rate law in the limit of the Ginzburg-Landau 
behaviour 

where we use the nomenclature of Salje (1988). The order parameter Q(P,, e) is con- 
structed such that the slope of G with respect to the pathway of the system in e, P, space 
is maximised. Fluctuation regions will then occur on a length scale which is comparable 
with theinteraction length of e and/or P, (i.e. some 100 A) (Salje 1988). Experimentally, 
these domain structures were first observed by Kanzig (1951) in BaTiO, where the same 
treatment holds as in the present case. 

The typical relaxor behaviour differs from the pure relaxation of e and/or P, in a 
Landau-Ginzburg mechanism, because the third order parameter, Qod, may also change 
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kinetically. Its conservation law is, in contrast to the behaviour of e and P,, not clear. 
Although it seems that Qod is a conserved quantity leading to a sluggish order/disorder 
phase transition at temperatures above 1000 'C, its coupling with the lattice relaxation 
and any random field might result in a change of the length scale over which the 
conservation law is valid (Salje 1989b). Consequently we find that the Ginzburg-Landau 
kinetics has to be replaced by the more general rate law (Salje 1988) 

where the parameters E, and &' indicate the length scale of the order parameter con- 
servation and the correlation length, respectively. I f f ,  = &', the order parameter is fully 
conserved and we expect exsolution features to occur (the so-called Cahn behaviour, 
Cook and Hilliard (1969)). In the opposite extreme, &', = 0, this rate law is identical with 
that of Ginzburg-Landau kinetics. No analytical solutions have yet been described for 
the intermediate range 0 < (E,/&')' < 1. It appears plausible, however, that relaxor 
materials are related to these intermediate states because the Landau potential is very 
shallow with respect to an ordering process in Qod. The various B atoms have very much 
the same size and similar chemical potentials. It is possible, therefore, that very small 
changes of the chemical composition, introduction of lattice imperfections etc. can turn 
the ordering process into an exsolution process which would then lead to clusters of 
slightly different chemical compositions inside a common crystallographic matrix. These 
local domains (Kanzig domains) are then frozen in at low temperatures leading to space 
variations of Qod and hence influence, via G(e, P,) + G(coupling), the spontaneous 
strain and the spontaneous polarisation. With this respect, we find similarities between 
relaxors and metal/insulator phase transitions of the Anderson type (Anderson 1975, 
Schirmer and Salje 1980, Bryksin 1982). The role of the random field of the Anderson 
transition is now represented by Qod, the electronic wavefunction is equivalent to the 
strain field (and/or P,). The major difference between the two transition mechanisms is 
the characteristic length of the order parameters being either on the atomistic (Ander- 
son) or the mesoscopic scale (relaxor). 

Further experimental work on the relaxor PbSco,5Tao,503 is under way. 
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